
www.manaraa.com

Design and Analysis of Hashing Algorithms with CacheE�ectsHongbin QiDepartment of Computer ScienceUniversity of California, Davisqi@cs.ucdavis.edu Charles U. MartelDepartment of Computer ScienceUniversity of California, Davismartel@cs.ucdavis.eduAugust 10, 1998
Abstract:This paper investigates the performance of hashing algorithms by both an experimental and ananalytical approach. We examine the performance of three classical hashing algorithms: chaining,double hashing and linear probing. Our experimental results show that, despite the theoreticalsuperiority of chaining and double hashing, linear probing outperforms both for random lookups.We explore variations on the data structures used by these traditional algorithms to improve theirspatial locality and hence cache performance. Our results also help determine the optimal tablesize for a given key set size. In addition to time, we also study the average number of probesand cache misses incurred by these algorithms. For most of the algorithms studied in this paper,our analysis agrees with the experimental results. As a supplementary result, we examine thebehavior of random lookups to a hash table. This provides a simple way to estimate the cachemiss penalties of di�erent machines. Two conclusions can be drawn from this study. First, cachee�ects have a signi�cant in
uence on the performance of hashing algorithms. Second, it is possibleto predict fairly accurately the performance of di�erent hashing algorithms based on the algorithmcon�gurations and cache structures.
This work was supported by NSF grant CCR 94-03651.

www.manaraa.com

1 IntroductionCache miss penalties are increasing dramatically. Currently, more than 30 machine cycles areneeded to serve a cache miss in high performance architectures. Therefore, to design e�cientalgorithms, we must take cache e�ects into account. In this paper, we perform a study of the cacheperformance of hashing algorithms. The main purpose of this paper is to use experimental andanalytical tools to understand and improve the performance of hashing algorithms.The Dictionary problem, where keys may be inserted, deleted and looked up, is one of the mostfundamental uses of computers, and hashing is often the method of choice for solving it. Thus itis important to �nd the best practical hashing schemes and to understand the empirical behaviorof hashing. While hashing algorithms have been studied extensively under traditional cost models,there has been little prior work focusing on their cache e�ects.Chaining, double hashing and linear probing [4, 6] are the three most classic hashing algorithms.Traditionally, chaining and double hashing are considered superior to linear probing because theydisperse the keys better and thus require fewer probes. Our experiments show, however, that atleast for uniform accesses, linear probing is faster than both for insertions, successful searches andunsuccessful searches. This is true unless the table is almost full or can be stored entirely in theL1 cache. Since it is rarely a good idea to have the hash table be that full, linear probing seems tobe the clear winner in the settings we considered.The reason for this di�erence in performance is due almost entirely to cache e�ects. Linearprobing exhibits good spatial locality. Although chaining and double hashing require fewer probes,the poor spatial locality of their data access patterns result in more cache misses and thus makethem slower than linear probing.Cache misses can be reduced by improving spacial locality. A program exhibits spatial locality ifthere is a good chance that subsequently accessed data items are located near each other in memory.In this paper, we show that spatial locality is an important factor in a�ecting the performance ofhashing algorithms, and we introduce some new hashing algorithms which improve spatial locality.The basic operation on hash tables is a probe, that is, to examine a key in a table entry. Toimprove the spatial locality of hash tables, we want as many successive probes as possible to takeplace in a single cache block. Specially, if a cache block can hold multiple keys, we can modify thehashing algorithms in such a way that a probe sequence �rst examines all of the keys in a cacheblock.In traditional algorithm analysis, the expected number of probes is the main standard forcomparing and measuring di�erent hashing algorithms. As cache miss penalties increase, however,this standard is no longer valid. Hashing algorithms which exhibit good spatial locality can havegood performance even if they require more probes.To improve the performance of double hashing, we introduce a variation to its table structure.We hash a key to a table entry which contains multiple key slots. The number of key slots in atable entry is set so that a table entry has exactly the same size as a cache block. When a key ishashed to a table entry, the key slots in that table entry are examined sequentially. The advantageof this approach is that all the key slots in one cache block are checked before another cache blockis involved, and the number of potential cache misses is therefore reduced. We call this approachpacked double hashing. Because of its better data access pattern, packed double hashing achievesnotable improvement over the traditional double hashing.We also introduce a variation on chaining. Instead of storing one key and one pointer in a tableentry or list node, we store multiple keys and one pointer, so that a table entry or list node hasexactly the same size as a cache block. We call this approach packed chaining. Packed chainingo�ers two advantages over normal chaining. First, it exhibits better spatial locality. Second, it1

www.manaraa.com

usually uses less memory.The conclusions of this paper can be summarized as follows:(1) Analysis of hashing algorithms which is entirely based on the number of probes is oftenmisleading.(2) Linear probing is the clear winner compared to chaining and double hashing for uniformaccess patterns.(3) Hashing algorithms designed to improved spacial locality outperform traditional algorithms.(4) The number of probes and cache misses can often be predicted quite accurately as a functionof the hashing algorithm, access pattern, and cache structure. It is also possible to combinethese predictions to get an accurate estimate of the time expense of hashing algorithms.2 Related WorkLebeck and Wood showed several techniques that could be employed to improve cache perfor-mance [9]. They used these techniques to tune cache performance of the SPEC92 benchmarks andachieved signi�cant speedups. The prototypes of the two major techniques used in this paper,packing and aligning, can be found in [9]. LaMarca and Ladner examined the in
uence of cacheson the performance of heaps [7]. They presented optimizations that signi�cantly reduced cachemisses and improved the overall performance, and were able to extend their results to improve theperformance of sorting algorithms [8]. They also introduced an analytical model called collectiveanalysis that helps predict cache performance [7]. Black and Martel presented simple alternatives tostandard graph representations that substantially improved the performance of breadth-�rst-searchand depth-�rst-search [3].A recent hashing paper [11] develops a collision resolution scheme which can reduce the probescompared to double hashing for some very specialized settings. However, since they only look atprobes rather than execution time they don't address the e�ects we study here.3 Experimental SettingThe experiments were run on two platforms: DECstation 5000/25 and ALPHA 21164. The ALPHAhas an 8K byte on-chip direct mapped L1 data-cache and a 96K 3-way set-associative on-chip L2cache, both of which use 32-byte cache blocks [1]. Please refer to appendix A for other relevantsystem parameters. The DECstation is an older (and slower) architecture while the ALPHA isa faster and more modern machine. We looked at both to see how the performance of di�erentalgorithms changes as we move to newer machines with higher clock speeds. The general trendswere very similar for the two architectures, so we focus on the ALPHA results.We used 8-byte keys on the ALPHA. We chosehash(key) = key%Tas the hash function, where T is the table size. By table size we mean the maximum number ofkeys a table can hold. We distinguish table size from table space, which is the absolute memoryspace a table occupies. Since we used random integers as keys, the modulo function su�ced. Wechose increment(key) = Z � (key%Z)2

www.manaraa.com

as the increment used in double hashing and packed double hashing, where Z is a prime integersmaller than T . There are no general rules for choosing Z. We simply tried di�erent values andchose the one which minimized the running time. Our experiments show that small Z values oftenoutperform large ones. This is because the increment is likely to be small when Z is small, and twoconsecutive probes are more likely to be in the same cache block. For example, in double hashing,a Z value of 43 yields the best timing results on the ALPHA for a hash table of size 222.A key term in hashing algorithms is load factor, which is the ratio of the number of keys storedin a table to the table size. Load factor describes the storage density of a hash table.We used two random integer generators. One was RC5 [10], an encryption-decryption functionsuite, whose encryption function can be used as a random number generator. This function acceptsa parameter, and generates the same random integer if passed the same parameter. As we will seein section 4, this property is particularly useful when we examine the performance of successfulsearch. The other generator was random(), a UNIX system call, which returns 4-byte randomintegers on the DECstation and 8-byte random integers on the ALPHA.We tested each algorithm with regard to insertion, successful search and unsuccessful search.Each experiment consisted of two parts, one for successful search and the other for unsuccessfulsearch. To examine successful search, we used RC5 as the generator. We generated a set ofkeys, inserted them into an empty table, generated random elements from the same set of keys,and searched for them in that table. In this case, all the searches were successful. To examineunsuccessful search, we used random() as the generator. We generated a set of keys, inserted theminto an empty table, then generated random keys, and searched them in that table. Since thenumber of keys that could be generated by random() is far larger than the possible table sizes, thismeans that almost all the searches were unsuccessful. For this experiment, we only measured thetime spent computing hash functions, inserting and searching, and excluded the time generatingrandom keys.All the hash tables are cache-aligned, that is, no table entry spans two cache blocks. Onthe DECstation, the memory allocating function malloc() returns cache-aligned memory blocksautomatically. On the ALPHA, however, some pointer adjustment must be done explicitly by theuser to achieve alignment [1].4 Results of Random LookupsBefore examing the performance of hash tables, we explore the behavior of random lookups to ahash table. Given a table of size N , we repeatedly generate a random index i (0 � i < N) andread the ith entry of the table. In this experiment we only measure the time spent on the lookupand exclude the time spent generating the random indices. This experiment shows how the cachecapacity and the table size a�ect the Average Lookup Time (ALT) of hash tables. Consider asingle-level cache con�guration. When the table space is smaller than the cache, most table entriesare in the cache, and every lookup is a hit (ignoring con
ict misses). In this case, ALT should bea constant value. When the table size exceeds the cache capacity, however, cache misses begin tooccur, and ALT should start to increase. As the table grows, the cache miss rate grows, and ALTkeeps on increasing. When the table size is far larger than the cache, almost every lookup is a miss.In this case, ALT should become nearly constant again.Figure 1 shows the results of random lookups. The X-axis is the logarithm of the table space inbytes. The Y-axis is the average time in nanoseconds for a random lookup. The keys are of threedi�erent sizes: 1 byte, 2 bytes and 4 bytes.The results on the ALPHA are roughly what we expect: the curves are
at when the table size3

www.manaraa.com

is smaller than 213, which is the size of the L1 cache. The slopes increase again when the table sizeexceed 217, which is the size of the L2 cache. Due to paging e�ects, however, we are not able toobserve the �nal level-o�.The ALT chart provides a simple way to estimate the cache miss penalties. As shown in Figure1, the largest ALT is roughly 16 times the smallest ALT. Therefore the cost of a cache-miss lookupis roughly 16 times the cost of a cache-hit lookup. We can also use the ALT chart to estimate thecache miss penalties on machines with multiple caches, although more computation is needed.5 Results of Hashing AlgorithmsWe study successful searches and unsuccessful searches. To look at successful searches, we useRC5 [10] as the random integer generator. RC5 is an encryption-decryption function suite, whoseencryption function can be used as a random number generator. We generate a random set ofkeys, insert them into an empty table, generate random elements from the set of inserted keys, andlook them up in the table. Since we insert and search from the same set of keys, all the searchesare successful. Using RC5 we can generate random successful searches while using only minimalextra space to avoid polluting the cache. To look at unsuccessful searches, we use random() as therandom integer generator. We generate a set of keys, insert them into an empty table, generateanother sequence of keys, and look them up in the table. Since the range of keys generated byrandom() is far larger than the possible table size, almost all the searches are unsuccessful. We canalso use RC5 for unsuccessful searches, but since random() is signi�cantly faster than RC5, we userandom() for most experiments.We refer to hashing schemes which store all elements within the table (such as double hashing)as closed hashing, and schemes which use space outside the table (such as chaining) as open hashing.5.1 Results for Constant Table SizesIn this subsection, we present the results for constant table sizes. While the table sizes are constant,we vary the number of keys inserted into the table.5.1.1 Results for Closed HashingIn this subsection, we present the results for linear probing, double hashing and packed doublehashing. We �rst describe how a collision is handled when searching for a key x such that h(x) = i.In linear probing, if a collision occurs at entry i, entries (i+ 1), (i+ 2), (i+ 3)T , ..., are examineduntil x or an empty entry is found (all addresses are taken modulo T). In double hashing, after acollision occurs at entry i, we compute increment using a second hash function h2(x), and examineentries (i+increment), (i+2increment), (i+3increment)T , ..., until x or an empty entry is found.In packed double hashing, we hash a key to a table entry which contains multiple key slots. Thenumber of key slots in a table entry is set so that a table entry has exactly the same size as a cacheblock. When a key is hashed to entry i, the slots in that entry are examined sequentially. If x isnot found and the entry has no empty slots, we compute h2(x) as in double hashing, and examineentries (i+ increment), (i+2increment)T , ..., until x or an empty slot is found (note that now Trepresents the number of table entries, each of which contains multiple key slots).Figure 2 shows the results of insertions using linear probing, double hashing and packed doublehashing. In Figure 2, the X-axis denotes the �nal load factor after all keys are inserted. The Y-axisdenotes the average time to insert a key when insertions start with an empty table. Figure 2 shows4

www.manaraa.com

the results for a table size of 222 on the ALPHA, so the load factor is varied by changing thenumber of keys inserted. We also ran the experiments for successful and unsuccessful searches andfor other table sizes (bigger than the cache). In all cases the results were similar to those in Figure2. On both the ALPHA and the DECstation, linear probing outperforms double hashing signi�-cantly. As shown in Figure 2, linear probing is 20% to 46% faster than double hashing. The mainreason for this is that linear probing exhibits better spatial locality than double hashing. Whenthe table size is far larger than the cache capacity, each probe in double hashing is likely to incura cache miss. For linear probing, the table entries are examined orderly, and a cache miss occursonly if a probe goes from the last key in a cache block to the �rst key in the successive cache block.Thus in our setting with four keys per cache block, only 1=4 of the probes after the �rst are cachemisses. This e�ect is analyzed in section 6.One may argue that double hashing involves a second hash function, and this may also be areason that double hashing is not as e�cient as linear probing. Our experiments show, however,that the cost of the second hash function only constitutes a negligible part of the total executiontime. For example, at a load factor of 0.1, the cost of the second hash function contributes to 1%of the total execution time. Note also that, like the �rst hash function, the second hash function iscomputed at most once for each key, no matter how many probes are performed. As the load factorgrows and the number of probes increases, the overhead of the second hash function becomes lessand less important. Therefore we can ignore the overhead of the second hash function.Packed double hashing outperforms double hashing, and is signi�cantly faster than doublehashing at high load factor. As shown in Figure 2, the performance of packed double hashing isclose to that of linear probing. We can also see that the performance of packed double hashingis more stable. As the load factor increases, the cost of packed double hashing does not climb asdramatically as double hashing or linear probling. We believe this is because the number of cachemisses incurred in packed double hashing is relatively stable.5.1.2 Results for ChainingIn this subsection, we present results for chaining and packed chaining. In chaining, a linked listis used to store the extra keys hashed to a table entry. In packed chaining, instead of storing onekey and one pointer in a table entry or list node, we store multiple keys and one pointer, so that atable entry or list node has the same size as a cache block. When a key is hashed to a table entry,the key slots in that table entry and linked list are examined sequentially.The performance of chaining and packed chaining are compared both in terms of table size andin terms of table space. As noted earlier, by table space we mean the absolute memory space atable occupies. The motivation for comparing their performance in terms of table space comes fromthe fact that chaining uses more space than packed chaining when both have the same table size.By comparing their performance in terms of table size, we see how much bene�t packed chainingcan gain by using less space for each key.Figure 2 shows the results of insertions using chaining and packed chaining. There are twocurves for chaining. Chaining 1 uses the same table space as packed chaining and thus has a higherload factor. Chaining 2 uses the same table size as packed chaining so it has the same load factor.The table size is 222. The Y-axis still denotes the average time to insert a keys when insertionsstart with an empty table. To explain the meaning of the X-axis, we need some further clari�cationof the table structures.As noted earlier, we use 8-byte keys and pointers on the ALPHA. Since a cache block is 32bytes on the ALPHA we can put exactly three keys and one pointer in a cache block. We can see5

www.manaraa.com

from these numbers that chaining uses one half more space than packed chaining when both havethe same table size. For chaining 1 and packed chaining, the X-axis still denotes the load factor.Chaining 2 uses the same table space as packed chaining, which means the load factor of chaining2 is 1.5 times that shown on the X-axis.On the ALPHA, packed chaining outperforms chaining not only with the same load factor, butalso with the same table space. As our analysis shows, packed chaining incurs more probes butfewer cache misses because of its better spatial locality. Therefore packed chaining excels due tothe ALPHA's high cache miss penalty.Again we ran the experiments for successful and unsuccessful searches and for other table sizes,and packed chaining was consistently better than chaining.5.2 Results for Constant Key Set SizesWe repeat the experiments described in subsection 5.1 for various table sizes. By collecting andcomparing these results, we are able to answer this question: what table size performs the best fora particular key set size? We choose a key set size, and compare the performance of di�erent tablesizes for it. This can be useful in developing applications. Often a rough prediction of the key setsize is available. We can then choose the appropriate table size and hashing algorithm. Note thatthere is likely to be a tradeo� between the number of probes and the rate of cache misses: as thetable gets larger the number of probes drops but the cache miss rate rises. We will analyze this ingreater detail in section 6.When the number of keys is larger than the cache capacity but much smaller than the size ofthe main memory, all of the �ve hashing algorithms described above achieve their best performancewhen the load factor is relatively low, and become less e�cient as the load factor grows.We considered load factors ranging from .2 to .9. On the ALPHA, chaining and double hashingare most e�cient at a load factor of 0.2, Linear probing, packed chaining and packed double hashinghave almost the same performance at load factors of .2 to 0.4, and are best in this range.Figure 3 shows the average time to insert a key for di�erent table sizes. Here, insertions startwith an empty table and end with a load factor of 0.2 for chaining and double hashing and 0.4 forlinear probing, packed chaining and packed double hashing.Among these algorithms, linear probing achieves the best performance across all table sizes fora given key set size. Linear probing is also the winner for both successful and unsuccessful searcheswhen the table load is below 0.8. There are several reasons for this. Linear probing exhibits agood spatial locality. Unlike open hashing, it involves no pointer traversals, which are di�cult tooptimize and more likely to cause cache misses. It is also simple enough to beat those algorithmswhich use packed structures.Processor speeds are still growing at a high rate. As the gap between the memory and theprocessor widens, we can expect that the advantage of linear probing over other hashing algorithmsmay increase.We should add some restrictions on our results. Our successful and unsuccessful search resultsassume uniform access patterns and smallish keys. If the access pattern is skewed (as is true inmany real applications) the number of cache misses will decrease and therefore chaining and doublehashing should perform better. Also, if fewer table entries �t in a cache block (due to larger keys ordata), LP's advantage due to spacial locality will decline. Preliminary results suggest that LinearProbing is still the winner for moderately skewed access patterns, but this requires further study.
6

www.manaraa.com

6 Performance AnalysisThe performance of a hashing algorithm will largely be determined by the expected number ofprobes and cache misses. When an algorithm probes a cache block which di�ers from the lastaccessed one we call this a jump. To analyze cache misses we start by studying the expectednumber of jumps and probes for our hashing algorithms. In our analysis we assume that the hashfunction hashes a key to location i with probability 1=T where T is the table size, and similarly,with double hashing we assume the next location probed is equally likely to be any Table location.We start by describing our experimental results on the number of probes, jumps and cachemisses in various settings. We then compare these results to our predictions.6.1 Measurements of the Number of Probes and JumpsFigures 4 and 5 show the average number of probes per insertion. Only the results on the ALPHAare shown, because the two platforms produce very similar results. Note that, for a given algorithmand load factor, the average number of probes is essentially the same, regardless of the table sizeand the key set size. It is easy to prove that the average number of probes for an insertion is thesame as that for a random successful search. The number of probes for an unsuccessful search isdi�erent from that for a successful search, but the general ordering of the algorithms is the same.Thus we only show the curves for insertions.In linear probing, packed chaining and packed double hashing, multiple probes may take placein the same cache block before another cache block is involved. We call a probe that leaves onecache block and enters another a jump. Because each of these jumps is likely to incur a cachemiss for large table sizes, we also show the number of jumps in Figures 4 and 5. In the followingsubsections, we give a brief analysis of the number of probes and jumps of each algorithm. Althoughwe rely partly on approximations, our analysis mostly agrees with the experimental results.6.1.1 Analysis of Linear ProbingIt is shown in [6] that the average number of probes incurred by an unsuccessful search in a tablewith load factor � = n=T is given by 1 + 1=(1 � �)22 (1)The expected number of probes per insertion into a table whose �nal load factor is � is thusgiven by Z �0 1 + 1=(1� �)22 = 1 + 1=(1 � �)2 (2)To �nd the expected number of jumps let B denote the number of keys which �t in a cacheblock, and we assume that these B entries exactly use up one cache block. Suppose an LP serch(for insertions, successful search or unsuc. search) uses k probes. The �rst probe is a jump. Toanalyze the number of addtional probes let k � 1 = dB + r , r = (k � 1) mod B, then the numberof additional cache blocks hit when:r = 0, always hits exactly d morer = 1, hits d more unless start in the last entry of a block, then hit d+ 1... 7

www.manaraa.com

r = B � 2, hit d+ 1 unless start in �rst or second entry of a block, then hit dr = B � 1, hit d+ 1 unless start in �rst position, in which case hit d.Since we assume we start the search at a random location, each starting position in a block hasprobability 1=B. Thus the expected number of jumps for k consecutive probes is1 + d+ rB = 1 + dB + rB = 1 + k � 1B (3)Since this formula is linear in k, we can get the expected number of jumps as a function ofthe load factor by replacing k in equation 3 above by the expressions for the expected number ofprobes in equations 1 (for unsuc.) and 2 for suc. search.The resulting formulas match the observed number of jumps almost exactly.6.1.2 Analysis of Double HashingDouble hashing is able to scatter the keys in the hash table and thus achieve a high level ofuniformity. Thus each successive probe is overwhelming likely to be in a new cache block, so thenumber of probes and jumps will be essentially equal.The probability that a particular table entry is occupied is �, and the expected number ofprobes (and jumps) for an unsuccessful search is:TXK=1K(1� �)�K�1 = 11� � (4)where T is the table size. This is also the expected number of probes to insert a key into atable with load factor �, so the expected number of probes and jumps for a successful search is:Z �0 11� � = � ln(1 � �)� (5)6.1.3 Analysis of Packed Double HashingThis is the most di�cult setting for us to analyze, but we can get some reasonable approximations.For Packed Double Hashing (PDH) we assume the table is partitioned into S slots where each slotcan hold B keys and takes up one cache block. Thus the table can hold a total of SB keys, andn=(SB) = � is the load factor. To begin with we analyze the expected number of jumps for PDH.Let � = n=S which is the average number of keys per slot.Suppose we randomly throw n balls into S bins. We want to know the probability that a bincontains a speci�c number of balls. This is a classic result if there is no upper limit on the numberof balls a bin can hold. This is also exactly the case of chaining. For PDH a bin can hold only Bballs, and we know of no closed form solution to this problem.We can approximate this using the following model: In Round one randomly throw n ballsinto S bins. However, if B balls end up in a bin, any additional balls bounce, and will have to beassigned to some other bin in a later round.In Round 2 all balls which bounced in Round 1 are again randomly assigned to bins. If the binhas fewer than B balls (counting those from Round 1 and earlier balls from Round 2), the new ballis added, otherwise it bounces again and must be reinserted in Round 3.Rounds continue untill all balls have been inserted.It is fairly easy to show that the rounds model is equivalent to PDH: the Pi values are thesame for both, and the expected number of bounces to insert all items is exactly the same as theexpected number of double hashes done in PDH.8

www.manaraa.com

We can easily analyze round 1 using known results on the probability of a certain number ofballs in a bin [5]: Let Pj be the probability we end up with j balls in a bin at the end of Round 1.Pj = �j exp(��)j! (6)Let PB+ denote the expected fraction of slots which are full after Round 1. PB+ = 1 �P0 � P1 � : : : � PB�1. The expected number of balls which do not bounce in round 1 is NB =S(P1 + 2P2 + : : : + (B � 1)PB�1 + BPB+). Thus, the expected number of balls which bounce inRound 1 is n�NB.Analyzing later rounds precisely gets more complicated, however as long as � is not too close toB not too many balls will bounce in Round 1, and we can approximate later rounds by assumingno bin gets more than one new ball in these rounds. Thus a ball only bounces if it hits a bin whichwas full in the prior round, and non-full bins increase by one if they are hit by some ball in thatround. For example, if B = 4 as in our experiments, and � = 3:2 which is a .8 load factor, weexpect less than 13% of the items to bounce in round 1. Using equation 6 above, if we now insert(:13)(3:2)S balls into S slots, we expect fewer than .5% of the original balls to bounce by having2+ balls hit a bin which was not full.For successful search, this approximate analysis of the number of jumps was within 1% of ourexperimental results for load factors below .8, was o� by 4% at .8 but o� by 12% at .9. We can getmore accurate results by analyzing Round two more precisely, or simply simulating the setting.6.2 Probes for Packed Double HashingEach bounce is preceded by B probes (though if we sorted the keys in a slot it might be faster).The expected number of probes depends on the order we visit locations in a slot. If we insertby starting at position one, and look at two, three, ..., B until we hit a free slot, then each slotcontaining k keys used i probes, for i = 1; 2; :::; k to insert the ith item into that slot, for a totalof k(k + 1)=2. Recall that � = n=S and let Ri be the expected number of slots which end up withi keys. if J is the expected number of bounces per insertion, the expected number of probes is:BJ + (1=�)(R1 + 3R2 + : : : +B(B + 1)RB=2).Using the approximation described in the prior section we can estimate J and the Ri values fora given B and �. These results were within 10% of our observed results for loads below .8, but arenot as good as for estimating the jumps.6.2.1 Analysis of ChainingThe probability that a linked list is of length j, is just Pj as in equation 6 of the prior section, andthe expected number of probes for successfull and unsuccessful search are well known [6]. In ourexperiments each linked list node took up an entire cache block, so each probe is a jump. Evenif the nodes are smaller than a cache block, since each probe follows a link to an unpredicatablememory location, it is likely to be a jump.6.2.2 Analysis of Packed ChainingPacked chaining is very similar to chaining, except that a table entry can contain multiple keys.As in PDH we have S slots each of which can hold B keys plus a pointer (so B is likely smallerthan for PDH). We let � = n=S, so the probability j keys hash to a slot is given by Pj in equation6. We also use Pj+ to denote the probability a slot has j or more keys.9

www.manaraa.com

Thus the expected fraction of keys in the table is: I0 = (P1+2P2+: : :+(B�1)PB�1+BPB+)S=n.Similarly, using S=n = 1=�, let Ij be the expected fraction of keys in the jth node of a chain.I1 = (PB+1 + 2PB+2 + : : : + (B � 1)P2B�1 +BP2B+)1=�Ij = (PjB+1 + 2PjB+2 + : : :+ (B � 1)P(j+1)B�1 +BP(j+1)B+)1=�.Looking up a key in the table takes one jump, any key in the �rst node of a chain takes two jumps,and so on. Thus the expected number of jumps Js for insertions or a random successful search isjust:Js = I0 + 2I1 + 3I2 + : : :The Ij values fall o� rapidly once Bj > � so summing a moderate number of terms gives an accurateanswer.For unsuccessful search we have to serch to the end of the chain (unless we added some order tothe nodes in the chain). Thus Ju the expected number of jumps for an unsuccessful search whichstarts at a random slot is:Ju = (P0 + P1 + : : :+ PB) + 2(PB+1 + : : :+ P2B) + 3(P2B+1 + : : :+ P3B) + : : :Again, the Pj terms fall o� rapidly once j > � so it is easy to compute Ju.6.3 Probes in Packed ChainingTo count the expected number of probes for packed chaining note that we can view the keys hashedto a slot as forming an ordinary linked list (if k keys hash to a given slot, one key is looked up witha single probe, one with two probes, ...). Thus we can use the standard analysis of the probes forsuccessful search in chaining treating the load factor as n=S = �.1 + �2 (7)Similarly, the expected number of probes per unsuccessful search is given bye�� + �+A (8)where A is an adjustment value. Why do we need an adjustment value? In normal chaining,the probing process is ended when a null pointer is met, and the number of probes is exactly thelength of the linked list. In packed chaining, however, a table entry (list node) contains multiple keyslots. If a table entry or list node is partially occupied, we cannot stop probing until we �nd thatthe next key slot is empty. In this case, one more probe is performed, and A is just the probabilitythat one more probe is performed. Obviously, A is equal to the probability that a table entry (listnode) is neither empty nor fully occupied and can be computed using the Pj values.6.4 Analysis of the Number of Cache missesThe prior analysis looked at jumps and probes. Here we try to look more precisely at which jumpswill be cache misses. We �rst consider the expected time to perform a random unsuccessful searchin double hashing. This is modeled quite accurately by assuming that we simply select locations inthe table uniformly at random until we hit an empty entry. Let C be the cache capacity measured inunits of table entries. Let � be the load factor and P the cache miss penalty (so reading a locationin the cache takes one time unit and reading a location not in cache takes P +1 time units). Herewe assume a simple two level memory system with a single cache. Let B be the number of tableentries which �t into a cache block (so B = 4 on the ALPHA if we store 8-byte keys in the table).For T > C, for each probe into the table, the probability that the location probed is not in thecache can be approximated by 10

www.manaraa.com

T � CT (9)And it is well known that the expected number of probes for a random unsuccessful search is11�� [6]. Therefore the expected cost of a random unsuccessful lookup is11� �(1 + T � CT P) (10)To study the behavior of this function with respect to T we take its derivative which isPC � (P + 1)n(T � n)2 (11)The most interesting feature of the derivative is that it is always negative when n > C. Thereforeif the keys do not �t in the cache, the expected cost keeps decreasing as we make the table bigger.Note that this is true regardless of P , the cache miss penalty. In fact, we can extend this analysisto a two level cache as well, which again shows that if n is larger than the size of the L2 cache itis optimal to keep increasing the table size (presumably up to the point where paging e�ects startand the models break down). If the key set is bigger than the L1 cache but smaller than the L2cache, the models suggest setting T to the size of the L2 cache.To test the predictions of the models, we used a key set which was larger than the L2 cacheand varied the table size. The expected time for a random unsuccessful search did decrease as thetable size increased, and at approximately the rate suggested by the models.Unfortunately, all other settings are rather complex to model their cache miss behavior precisely.Consider random successful searches in double hashing. The expected number of probes/jumps fora random successful search is well known, but the probability that a probe will be a cache hit ismore complicated than in the prior case. First, only those cache blocks which contain at least onekey will ever be accessed during a successful search. Thus equation (9) is immediately invalid if weperform only successful searches. In addition, cache blocks which contain di�erent number of keyshave di�erent probabilities of being in the cache. Consider the case where there is room for 4 keysin a cache block. A block B4 with four keys is approximately four times as likely as a block B1 withonly one key to be in the cache, since it is almost four times as likely a key in B4 was hit recentlythan the key in B1. It is straightforward to compute the probability of a cache block containing ikeys for i = 1; 2; :::; B for DH. Unfortunately there is also another complication for all successfulsearch settings. Consider a location i in the table. Any key k such that h(k) = i starts its searchat location i. Thus some locations will be accessed more frequently to start a search. Locationi may also be accessed if it is on the probe sequence for a key which does not hash initially to i(in LP, DH and PDH). Thus di�erent cache blocks may have rather di�erent probabilities of beingaccessed based on the number of keys they hold and the number of probe sequences which "hit"them.For Linear Probing consider a region of 25 consecutive �lled locations in the hash table. For anunsuccessful search, any probe which starts at any of these locations will end at the empty locationfollowing this region. Therefore the cache block containing that empty location is more likely tobe in cache than the cache block containing the �rst location in the �lled region. Therefore, evenfor unsuccessful searches, we cannot just use equation (9) to compute the probability that a jumpis a cache hit.These complications are actually all good things for performance: even if we make the tablelarge, empty cache blocks will not interfere with successful searches, and blocks with more keys areboth more likely to be accessed and more likely to be in the cache.11

www.manaraa.com

An additional consideration is that some new machines (such as the Pentium II) use prefetchingto start loading cache block i+ 1 from memory as soon as cache block i is accessed. In this case itis reasonable to approximate the number of cache misses for LP as one per lookup, which makesthe analysis much simpler and makes linear probing more attractive.6.4.1 Analysis of Other SettingsChaining has some of the same complications as linear probing: memory locations at the start oflong chains are more likely to be in cache than others.6.5 Simulation of the Number of Cache missesWe used Atom [2] to simulate the cache behavior of each hashing algorithm. We simulated a direct-mapped single-level cache which has exactly the same con�guration as the DECstation cache. Wechose to simulate the DECstation cache because a single-level cache would make our experimentalresults easier to analyze and more representative. Figure 6 shows the average number of cachemisses per insertion.A cache miss occurs only when a jump occurs. The probability that a jump causes a miss isequal to the probability that the target cache block of this jump is not in the cache.We see that the number of cache misses roughly tracks the timinging performance we saw inFigure 2. Linear probing performs somewhat better than the cache miss curves suggest and chainingsomewhat worse. This may be due to the simpler address calculations in linear probing or due toeasier optimizations of non-pointer based code by the compiler.7 ConclusionThis paper investigates the performance of hashing algorithms by both an experimental and ananalytical approach. We examine the performance of several classical hashing algorithms andintroduce simple variations to the data structures used by these algorithms to improve their spatiallocality and hence cache performance. We also present a brief analysis of the expected numberof probes and cache misses. For most of the algorithms studied in this paper, our analysis agreeswith the experimental results. Two conclusions can be drawn from this study. First, cache e�ectshave a signi�cant in
uence on the performance of hashing algorithms. Second, it is possible topredict fairly accurately the performance of di�erent hashing algorithms based on the algorithmcon�gurations and cache structures.There are several important additional areas to study. First, it is important to consider variousdata sizes associated with the keys. Second, it would be good to consider skewed access patterns,which occur quite often in real applications. Third, it would be enlightening to study hashing whenother memory intensive operations are also being used. Finally, there are a number of other hashingschemes which were not studied in our experiemnts.8 Appendix A: System ParametersThe ALPHA has 64M memory and runs Linux version 2.0. It has an 8K direct-mapped L1 datacache and a 96K 3-way associative L2 data-instruction cache, with 32 bytes per cache block. TheDECstation has 32M memory and runs Ultrix version 4.3. It has a 64K-byte direct-mapped data-instruction cache, with 16 bytes per cache block.12

www.manaraa.com

Time expense was measured using times(), a UNIX system routine. All the results reported inthis paper were the average of 100 timing experiments run at 10 di�erent times. All the programswere written in C language and compiled using the vendor's native cc command under optimizationlevel 4.References[1] Digital Semiconductor 21164 ALPHA Microprocessor Hardware Reference Manual. DigitalEquipment Corporation, Maynard, MA, 1997.[2] A. Srivastava and A. Eustace. ATOM: A system for building customized program analysistools. In Proceedings of the 1994 ACM Symposium on Programming Language Design andImplementation, pages 196-205, 1994.[3] John Black, Charles Martel. Designing fast graph data structures: an experimental approach.Preprint 1997.[4] Thomas Cormen, Charles Leiserson and Ronald Rivest. Introduction to algorithms. The MITPress, 1990.[5] William Feller. An introduction to probability theory and its applications. Volume 1, secondedition. John Wiley and Sons Publishing Company, 1957.[6] Donald Knuth. Sorting and searching, the art of computer programming, Volume 3. Addison-Wesley Publishing Company, 1973.[7] Anthony LaMarca and Richard Ladner. The in
uence of caches on the performance of heaps.Journal of Experimental Algorithms, Volume 1, 1996.[8] Anthony LaMarca and Richard Ladner. The in
uence of caches on the performance of sorting.In the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, 1997.[9] Alvin Lebeck, David Wood. Cache pro�ling and the SPEC benchmarks: a case study. Preprint1997.[10] Ronald Rivest. The RC5 encryption algorithm. Proceedings of the Second International Work-shop on Fast Software Encryption. 1994, Leuven, Belgium.[11] B. Smith, G. Heileman, and C. Abdallah. The Exponential Hash Function. Journal of Exper-imental Algorithms, Vol.2, 1997.

13

www.manaraa.com

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

100

200

300

400

500

Figure 1. Time expense of random lookups on the ALPHA. The X-axis is the logarithm of
 table space in bytes. The Y-axis is the average time in nanoseconds to perform a lookup.

1-byte integer
2-byte integer
4-byte integer

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
400

500

600

700

800

900

1000

1100

1200

Figure 2. Time expense of insertions on the ALPHA. The X-axis is the load factor.
 The Y-axis is the average time in nanoseconds to insert a key. Insertions start with
 an empty table and end at the load factor on the X-axis. The table has 4M key slots.

chaining 2
double hashing
chaining 1
packed chaining
packed double hashing
liner probing

14

www.manaraa.com

16 17 18 19 20
0

100

200

300

400

500

600

700

Figure 3. Time expense of insertions on the ALPHA. The X-axis is the logarithm
 of key set size. The Y-axis is the average time in nano-seconds to insert a key.

 Insertions start with an empty table and end with a load factor of 0.2 for chaining
 and double hashing and 0.5 for linear probing, packed chaining and packed double hasing.

chaining
double hashing
packed chaining
packed double hashing
linear probing

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Figure 4. Average number of probes and jumps per insertion using closed
 hashing. The X-axis is the load factor. The table has 4M key slots.

packed double hashing (probe)
linear probing (probe)
double hashing (probe and jump)
linear probing (jump)
packed double hashing (jump)

15

www.manaraa.com

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0

0.5

1.0

1.5

2.0

2.5

Figure 5. Average number of probes and jumps per insertion using
 chaining. The X-axis is the load factor. The table has 4M key slots.

packed chaining (probe)
chaining (probe and jump)
packed chaining (jump)

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0

0.5

1.0

1.5

2.0

2.5

Figure 6. Average number of cache misses per insertion.
 The X-axis is the load factor. The table has 4M key slots.

double hashing
linear probing
packed double hashing
chaining
packed chaining

16

